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The dynamics of a vortex ring moving orthogonally to the rotation vector of a uni-
formly rotating fluid is analysed by laboratory experiments and numerical simulations.
In the rotating system the vortex ring describes a curved trajectory, turning in the
opposite sense to the system’s anti-clockwise rotation. This behaviour has been ex-
plained by using the analogy with the motion of a sphere in a rotating fluid for which
Proudman (1916) computed the forces acting on the body surface. Measurements
have revealed that the angular velocity of the vortex ring in its curved trajectory is
opposite to the background rotation rate, so that the vortex has a fixed orientation in
an inertial frame of reference and that the curvature increases proportionally to the
rotation rate.

The dynamics of the vorticity of the vortex ring is affected by the background
rotation in such a way that the part of the vortex core in clockwise rotation shrinks
while the anti-clockwise-rotating core part widens. By this opposite forcing on either
side of the vortex core Kelvin waves are excited, travelling along the toroidal axis
of the vortex ring, with a net mass flow which is responsible for the accumulation
of passive scalars on the anti-clockwise-rotating core part. In addition, the curved
motion of the vortex ring modifies its self-induced strain field, resulting in stripping
of vorticity filaments at the front of the vortex ring from the anti-clockwise-rotating
core part and at the rear from the core part in clockwise rotation. Vortex lines, being
deflected by the main vortex ring due to induction of relative vorticity, are stretched
by the local straining field and form a horizontally extending vortex pair behind
the vortex ring. This vortex pair propagates by its self-induced motion towards the
clockwise-rotating side of the vortex ring and thus contributes to the deformation of
the ring core. The deflection of vortex lines from the main vortex ring persists during
the whole motion and is responsible for the gradual erosion of the coherent toroidal
structure of the initial vortex ring.

1. Introduction
Free shear flows subjected to background rotation have been studied extensively

because of their relevance to geophysical flows and technical applications. For ex-
ample, the steady uniform rotation of the Earth implies that atmospheric and ocean
eddies are affected by the Coriolis force: depending on their size and mean velocity
scales the Rossby number (expressing the relative importance of inertial and Coriolis
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forces) of these flow structures can vary from O(10−2) to O(102). Background rotation
or swirl is also fundamental in turbo-machinery and combustion chambers whose
efficiency is severely influenced by the interaction between mean flow and imposed
rotation.

Tritton (1992) and Métais et al. (1995) (see also several references therein) have
studied the effect of background rotation on coherent structures, with the background
rotation oriented such that the system vorticity was either parallel or anti-parallel
to the local relative vorticity. Verzicco et al. (1996) have considered the dynamics of
a vortex ring translating in the same direction as the rotation vector, so that the
system vorticity was orthogonal to the ring vorticity. In flows of practical interest,
however, the angle between the local relative vorticity and the system rotation covers
a wide range of orientations. These flows, consisting of many interacting vortex
structures, are generally quite complex and their study is very difficult. However,
if the investigation is restricted to study only a single vortex structure with an
initially symmetric structure, a profound analysis of the flow dynamics is attainable.
Therefore, the motion of a single vortex ring is considered, oriented in a direction
orthogonal to the rotation vector, hence in a horizontal plane. Although this vortex
has a ‘simple’ and well-known structure, all possible orientations between relative
vorticity and system rotation are incorporated. A detailed study of this problem can
provide substantial insight into the dynamics of complex vortical flows in rotating
environments.

In the 1920s, in one of his celebrated papers, Taylor (1921) describes the results
of an experiment in which a vortex ring is created in a rotating fluid. The direction
of propagation of the vortex ring was perpendicular to the axis of rotation of the
fluid. He observed that the vortex ring moved in a curved path relative to the
rotating fluid, its path being deflected in the clockwise direction if the fluid was
rotating anti-clockwise. He performed this experiment in order to demonstrate the
difference between two- and three-dimensional motion in a rotating fluid. He also
conducted experiments in which a cylinder and a sphere (with the same density as the
fluid) were drawn horizontally through the rotating fluid. As predicted theoretically in
previous papers (Proudman 1916; Taylor 1917) the two-dimensional motion generated
by the cylinder was not affected by the rotation of the system, and the cylinder
moved in a straight line relative to the rotating fluid. For the three-dimensional
motion generated by the sphere it was predicted that a net Coriolis force acts
perpendicularly to the direction of motion, causing the followed path to deviate
from a straight line. In analogy to the sphere, the vortex ring was then expected
to move along a circular path relative to the rotating system. In the experiments of
Taylor, however, no attention was paid to the evolution of the structure of the vortex
ring.

It is well-known that the background rotation of the system serves as a source
for the production of relative vorticity. In our previous paper (Verzicco et al. 1996)
on the motion of a vortex ring along the axis of rotation it was shown that the
flow generated by the vortex ring induces relative vorticity that in turn dominates the
successive evolution of the flow field. In the case considered in the present paper, again,
due to the rotation a secondary flow is induced by the vortex ring. The structure of the
secondary flow is in this case completely different, but the generation and evolution of
the flow field can still be studied in detail, because of the symmetric geometry of the
vortex ring. Using results of both laboratory experiments and numerical simulations
it will be shown that the background vorticity influences the evolution of the vortex
ring in a surprising way.
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The structure of this paper is as follows: in the next two sections the experimental
set-up and the numerical code are briefly described. Then, the combined results of
laboratory experiments and numerical simulations will be analysed and discussed in
order to provide more physical insight into the observed flow phenomena. Special
attention is paid to the structure of the flow in the horizontal cross-sectional plane
through the vortex ring centre, which serves as a symmetry plane of the flow. A
complete picture of the evolution of the three-dimensional structure of the vortex
is obtained from numerical simulations solely. Closing remarks are given in § 5. An
Appendix is added at the end in which the main results of some classical papers
(Proudman 1916; Taylor 1917, 1923) are briefly summarized, since these are necessary
for the discussion of the curved ring trajectory.

2. Experimental set-up
The vortex ring generator used in the present laboratory experiments has already

been used in the experiments in a previous work and it is described in detail in
Verzicco et al. (1996). Only the adjustments to the experimental set-up that were
necessary to perform the experiments described in this paper are mentioned here.

The vortex ring generator, consisting of a closed cylindrical box with a sharp-edged
circular orifice on top, could be rotated around a horizontal axis in a fork that was
fixed to a stand. In the study in Verzicco et al. (1996) the generator was oriented
such that vortex rings were fired vertically upwards. In the experiments presented
here the generator was rotated 90◦ and the vortex rings created propagated in a
horizontal direction. The vortex ring generator was positioned near the centre of a
large experimental tank of horizontal dimensions 150×100 cm and 30 cm height (see
figure 1). The tank was placed on a rotating table, whose angular velocity could be
varied between Ω = 0.06 s−1 and Ω = 0.2 s−1. The centreline of the orifice in the
generator was directed towards the centre of the rotating table.

A horizontal light sheet was used to illuminate the cross-section of the vortex ring
in a plane through the centre of the orifice. This light sheet was created by a slide
projector provided with a black slide with a narrow slit. Two adjacent slide projectors,
put on one side of the tank on a platform fixed to the rotating table, created a
thin horizontal light sheet spanning a large horizontal area. All experiments were
recorded from above by a video camera mounted on a frame attached to the rotating
table.

Fluorescein dye was used to visualize the flow field. The fluid in the vortex ring
generator was slightly dyed and the tank was filled with clear tap water to a level of
20 cm, the distance from the orifice centre to the free surface level and the bottom
of the tank being 10 cm. To avoid mixing during filling of the tank, the orifice was
temporarily closed by a metal plate. Before the experiments were started the water
in the tank had to spin-up for about one hour in order to achieve a state of uniform
rotation and then the metal plate could be pushed aside carefully.

A vortex ring was created by pushing a finite amount of fluid through the orifice,
at the sharp edge of which a vortex sheet rolled up into a vortex ring. The injection
of fluid was controlled by a stepmotor-driven traversing system, pushing a set-up
of six syringes simultaneously. From previous studies (see Verzicco et al. 1996) it is
known that, for an orifice with diameter Do = 4 cm, a fluid injection with slug length
Lo = 2.4 cm and mean injection velocity Uo = 2.4 cm s−1 at the generator orifice
produces a steady laminar vortex ring in a fluid at rest. The same fluid injection
parameters were used in the present experiments.
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Figure 1. Schematic top view of the experimental set-up. Vortex ring generator 1 is turned in the
fork 2 so that vortex rings are fired in horizontal direction. Tubes for fluid injection are connected
to the generator by two watertaps 3. The set-up is placed in a tank 4, filled with water, on top of
a rotating table 5. The sense of rotation of the table is denoted by an arrow. Two slide projectors
6, put on one side of the tank on a platform 7 fixed to the table, are used to produce a wide light
sheet to illuminate the flow in a plane through the vortex ring centre. A video camera (not shown)
mounted above the table records a top view of the experiment relative to the rotating system.

3. Numerical set-up
3.1. Equations of motion and numerical scheme

The flow in a rotating fluid is commonly described relative to axes rotating steadily
with the fluid. In a frame rotating with angular velocity Ω = Ωk (with k the unit
vector directed along the axis of rotation) the relative velocity u of an incompressible
viscous fluid satisfies the Navier–Stokes and continuity equations, written as

Du

Dt
≡ ∂u

∂t
+ (u · ∇)u = −∇p− 1

Ro
k × u+

1

Re
∇2u,

∇ · u = 0,

 (3.1)

with D/Dt ≡ ∂/∂t + u · ∇ the material derivative operator. The pressure p is the
reduced pressure, which includes the potential of the centrifugal force. These equations
have been written in dimensionless terms using the toroidal radius L and circulation
Γ of the initial vortex ring. In terms of these scales the Rossby number is defined
as Ro = Γ/2ΩL2 and the Reynolds number as Re = Γ/ν, with ν the kinematic
viscosity of the fluid.

In flow visualization experiments passive tracers (e.g. fluorescein dye) are used to
infer typical features in the flow development and to track the position of the vortex
structure in time. In order to obtain a closer comparison between the results of
these flow visualization experiments and numerical simulations, the evolution of the
concentration C of such a passively advected tracer is simulated, according to the
equation

DC

Dt
=

1

ReSc
∇2C. (3.2)
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Figure 2. Perspective view of the computational box and the initial configuration of the vortex ring,
with propagation direction U oriented orthogonal to the unit vector k of the rotation. The boundary
conditions at the bottom surface imply the presence of an image vortex below the computational
box that completes the vortex ring.

The Schmidt number Sc is defined as the ratio between the kinematic viscosity ν of
the fluid and the diffusivity κ of the tracer.

Equations (3.1) and (3.2) have been written in a Cartesian coordinate system and
discretized by centred finite-difference schemes, second-order accurate in space and in
time. In the limit ν → 0 the energy is conserved by (3.1) and the numerical scheme is
such that this holds in the discretized equations. The discretization is uniform in all
spatial directions. The numerical method is similar to that described by Orlandi (1990)
which has the following features. The discretized equations are solved by a fractional-
step method (Kim & Moin 1985) with the viscous terms computed implicitly and
the convective terms explicitly. The large sparse matrix resulting from the implicit
terms is inverted by an approximate factorization technique. At each time step the
momentum equations are provisionally advanced using the pressure at the previous
time step, giving an intermediate non-solenoidal velocity field. A scalar quantity Φ is
then introduced to project the non-solenoidal field onto a solenoidal one. The large
band matrix associated with the elliptic equation for Φ is reduced to a tridiagonal
matrix using trigonometric expansions in the periodic directions. The pressure at
the new time is also computed from the scalar Φ. The advancement in time of the
equations is obtained by a hybrid third-order Runge–Kutta scheme which, owing to
its large stability limit (CFL 6

√
3), allows CPU-time savings.

3.2. Initial configuration and convergence checks

The initial flow configuration is shown in figure 2 and consists of a vortex ring located
at the centre of a computational box. The axial centreline of the vortex ring is oriented
parallel to the x-axis and the unit vector k, denoting the rotation axis, is directed
along the z-axis of a Cartesian coordinate system, the vortex ring propagating with
velocity vector U . Laboratory experiments have shown that, even if the rotation is
present, the flow field remains symmetric relative to a horizontal plane through the
centreline of the vortex ring. To save computational effort it is therefore sufficient to
simulate only one half of the vortex ring, the symmetry plane z = 0 being the bottom
surface of the computational domain. The proper boundary conditions at this side, i.e.
vanishing normal velocity component and zero shear stresses, then imply the presence
of an image vortex that completes the vortex ring. These boundary conditions are
also imposed at the top surface, while periodicity is assumed at the lateral surfaces.

The domain is chosen sufficiently large to exclude artificial perturbations of the
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Figure 3. Time evolution of the positive and negative peak vorticities ωz in the horizontal symmetry
plane z = 0 of the flow, obtained from numerical simulations with Ro = 23 and Re = 900. (a)
Grid refinement check with fixed box size 8×8×4: fine grid 97×97×49 (solid lines) and coarse
grid 65×65×33 (dashed lines). (b) Domain dimensions check: small box 6×6×3 (dotted lines, grid
65×65×33), intermediate box 8×8×4 (solid lines, grid 97×97×49) and large box 12×12×6 (dashed
lines, grid 97×97×49).

flow introduced by the periodicity and finiteness of the domain. This is checked by
simulations with different box sizes. Furthermore, the number of grid points employed
has been submitted to a grid refinement check. For these checks the evolution of the
peak values of the vorticity of the flow are examined: the positive and negative
peaks of the axial vorticity component ωz in the plane z = 0 can be shown to
be representative of the vorticity maxima of the flow. Figure 3 (a) shows the time
evolution of the positive and negative peak values of ωz for two simulations with a
fine grid 97×97×49 and a coarse grid 65×65×33, respectively, in a box with fixed
dimensions 8×8×4 in the x-, y- and z-directions. This check confirms that the finer
grid is sufficient to describe the vortex ring evolution. Figure 3 (b) shows the results of
simulations with three different box sizes and the profiles of ωz display only a minor
dependence on the dimensions of the box. In conclusion, a box with intermediate
dimensions 8×8×4 with a fine grid 97×97×49 has been employed for the simulations
presented in this paper. A refinement check was also performed for the time step size
and it was mostly taken ∆t = 0.1, according to a CFL number <

√
3 as imposed by

the stability limit of the time integration scheme†.
In this numerical code the initial structure of the vortex ring has to be assigned

explicitly. In the previous paper (Verzicco et al. 1996) a different numerical code
written in cylindrical coordinates was used in which the generation and evolution of
a vortex ring as produced experimentally by the ejection of a finite amount of fluid
from a circular orifice was simulated. In that paper the initial parameters for the
numerical simulations were adjusted so that they mimic the laboratory experiments
very well. Taking advantage of the fact that both the experimental set-up and the
ring parameters were the same as in the present study, the initial vortex ring obtained
in that previous study will be used as initial configuration for the present simulations.
More precisely, the vortex structure used has already been formed in a simulation
without background rotation performed with the code in cylindrical coordinates. The

† The maximum velocity of the flow determines in combination with the grid spacing and the
time step ∆t the CFL number of the flow. For the present simulation the maximum velocity is
|u|max ' 0.7 at t = 0, yielding CFL ∼ (|u|max∆t/∆x) = 0.84.
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Figure 4. Evolution of (a) the ring radius R and (b) the velocity of propagation U of a vortex ring
without background rotation (Re = 900). Experimental data are denoted by symbols and results of
the numerical simulation by solid lines. Experimental parameters: Do = 4.0 cm, Lo = 2.4 cm and
Uo = 2.4 cm s−1. The numerical simulation is started with a vortex ring that has been formed in a
preliminary simulation with a different numerical code in a time t′ = 4. According to the present
time scaling, this corresponds to a time t = 9.2 during which the vortex ring already has evolved
before the actual simulation is started. In the figure the data from the simulation are therefore
plotted from t = 9.2.

initial three-dimensional fields necessary to start the numerical simulations with the
present code in Cartesian coordinates are then obtained by standard interpolation
procedures from the axisymmetric flow field of this initial vortex structure.

3.3. Scaling of the experiment

The scaling of the experiment to the numerical simulation was checked by experiments
without background rotation, performed with the present experimental set-up. In these
experiments the injection parameters Lo = 2.4 cm and Uo = 2.4 cm s−1 were used
that lead to the formation of a steadily propagating laminar vortex ring from a 4 cm
orifice. Video images of dye experiments taken at successive time steps were used to
measure the evolution of the ring radius R and the propagation velocity U in time. The
same ring parameters are obtained from a numerical simulation without background
rotation, started with the vortex ring described in the previous section. The results
of both the experiment and the simulation are shown in figure 4. In this graph the
experimental values of the ring radius and the velocity of propagation have been
scaled by a length scale L = 1.8 cm (denoting, approximately, the dimensional value
of the initial ring radius) and velocity scale V = 5.0 cm s−1, respectively. Using this
velocity scale the initial value of the vortex ring propagation velocity, being 1 cm s−1

in the experiment, matches approximately the initial value for U in the simulation.
From V = Γ/L it follows that Γ = 9.0 cm2 s−1. Accordingly, the time axis is scaled
byT =L2/Γ = 0.36 s. These scales are then used to determine the Reynolds number
Re = Γ/ν = 900 and the Rossby number Ro(Ω) = Γ/2ΩL2 = 1.4/Ω, which are
specific parameters for the numerical simulations. Among all parameters only the
rotation rate Ω was varied in the laboratory experiments.

While for Re and Ro it was possible to obtain a proper correspondence between
simulation and experiments, the same cannot be done for the Schmidt number.
In fact, the small diffusivity of tracers in liquids yields Sc ≈ O(500–1000) which,
due to resolution problems, is too large for three-dimensional numerical simulations.
Throughout this study a value Sc = 4 has been used which, though considerably lower
than the experimental value, still describes the effects of the different diffusivities of
vorticity and passive scalar. This is important when deducing aspects of vorticity
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dynamics from flow visualizations, since small flow scales observed from the tracer
might not exist in terms of vorticity.

It should be stressed that a good agreement between experiments and numerical
simulations in the absence of background rotation does not imply the same agreement
when rotation is present. In the latter case, the flow field is affected at all times by
the system rotation, including during the injection of fluid and the formation of the
vortex ring. This might lead to an initial configuration different from that of the
numerical simulations, where the rotation is imposed over an already existing vortex
ring formed in the absence of rotation. In the laboratory experiments only relatively
low rotation rates have been used for which it was observed that in the initial stage
a vortex ring was formed. As discussed in Verzicco & Orlandi (1996), to understand
the physics of the vortex ring evolution the initial vorticity distribution in the vortex
core is not particularly important; it is only to have one-to-one correspondence
between numerical simulations and laboratory experiments that the same initial
vorticity distribution should be used. In the present paper, comparisons between
vortex trajectories and vorticity dynamics of the ring core will be presented showing
that the differences in the initial structures are of minor importance for the subsequent
flow evolution. This implies that the initial conditions mentioned above can be used
also in the rotating cases.

4. Results
In order to get a qualitative picture of the flow field, images of a flow visualization

experiment are presented first. Using the arguments of Proudman (1916) and a simple
inviscid model for the motion of a sphere in a rotating fluid, the curved trajectory
of the vortex ring in the rotating system can be explained. Flow visualizations are
also used as guidelines for the subsequent analysis of the flow by direct numerical
simulations, which give a complete three-dimensional view of the structure. Advantage
is taken of the symmetry of the flow and important insight into the flow dynamics is
gained by analysing the evolution of the flow in the horizontal plane of symmetry.

4.1. Flow visualizations

The sequence of video images presented in figure 5 shows the propagation and
evolution of the vortex ring. Only a central cross-section of the vortex ring in a
horizontal plane normal to the axis of rotation was illuminated by the light sheet.
The images were recorded with a video camera fixed on the rotating table, showing the
flow field relative to the rotating frame. The table was rotating in the anti-clockwise
direction with a relatively low angular velocity Ω = 0.06 s−1, yielding a Rossby
number Ro = 23.

From the first image (figure 5 a) it is seen that after injection of the fluid an
axisymmetric vortex ring is created. In case of no rotation of the system this vortex
ring would propagate along a straight path. However, from the succeeding images
of figure 5 it is clearly seen that in the present case the path of the vortex ring is
curved, the ring being deflected in a clockwise direction. Although the vortex ring
remains a coherent structure, its shape changes in time and in the cross-sectional views
(figure 5 b–f ) a gradual change in the size of the dyed cores is observed. In particular,
the part of the core on the inner side of the curved path (henceforth denoted as the
‘inner core part’) shrinks, while the part of the core on the outer side (the ‘outer core
part’) expands in time. In oblique views of the flow structure (not shown here) it has
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Figure 5. Cross-sectional (top) view of the evolution of a vortex ring propagating in a plane
perpendicular to the rotation axis along a curved path in clockwise direction, i.e. opposite to the
sense of rotation of the system (Ro = 23 and Re = 900): (a) t = 6, (b) t = 17, (c) t = 33, (d ) t = 50,
(e) t = 117 and (f ) t = 150 after start of the fluid injection. Experimental parameters: Do = 4.0 cm,
Lo = 2.4 cm, Uo = 2.4 cm s−1 and Ω = 0.06 s−1.

been observed that the vortex structure as a whole remains approximately circular
during most of the motion.

It should be noted that a small filament of dye crosses the front of the vortex ring
from the outer core part to the inner core part, as can be observed in figure 5 (d ).
In the same figure a second filament of dye is seen to be shed between the two
vortex core parts. This filament is different from the trail behind the vortex ring in
figures 5 (a) and 5 (b), which is just fluid not entrained in the vortex ring during the
ring’s formation. The creation of both filaments in figure 5 (d ) will be discussed in
more detail in §§ 4.3 and 4.4, where the results of numerical simulations are examined.

At a later stage in the evolution the vortex ring is slightly twisted (figure 5 e) and a
horizontal cross-flow of dye from the outer to the inner core part occurs (figure 5 f ).
This cross-flow is limited to a narrow band of only a few millimetres thick, located
just in the light sheet as observed in an oblique view. After some time, a blob of dyed
fluid with hardly any motion remains.

Similar features of the ring dynamics have been observed if the Rossby number is
decreased, experiments have been performed to Ro ' 8. Proportionally to the rotation
rate the curvature of the ring trajectory and the respective squeezing and widening
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Figure 6. (a) Trajectory of a vortex ring measured from a dye-visualization experiment with Ro = 23
and Re = 900. Symbols denote the positions of the core centres at fixed time intervals ∆t = 2 s (first
positions measured 2 s after start of fluid injection); the plane of the vortex ring denoted by dashed
lines has been drawn at the same instantaneous ring positions as the images shown in figure 5; the
initial and final direction of the ring motion are indicated by arrows. (b) Rotation φ of the plane
of the vortex ring in time. (c) Decay of vortex ring propagation velocity U. (d ) Variation in time of
angle θ between the plane of the vortex ring and its direction of motion.

of the core sections are enhanced. The curved trajectory of the vortex ring will be
discussed in the next subsection and the gradual change of the core cross-sections
in § 4.3.

4.2. Curved trajectory of the vortex ring

To determine the trajectory of the vortex ring the positions of the centres of the
visualized core parts have been measured from video images at successive times and
these data are plotted in figure 6 (a). At a few positions in its trajectory, marking the
instantaneous positions of the vortex ring in the images in figure 5, the plane of the
vortex ring is denoted by dashed lines connecting the corresponding core centres; the
initial and final direction of propagation of the vortex ring is indicated by arrows.
The first part of the curved path is approximately circular and the plane of the vortex
ring remains perpendicular to its direction of propagation. At later times, however,
this motion is not maintained: the curvature of the path increases and the outer core
part seems to lag behind. This situation was apparent in figure 5 (e), where the vortex
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Figure 7. Ring trajectories measured from laboratory experiments with Re = 900 and different
rotation rates: (a) Ro = 16 (Ω = 0.09 s−1), (b) Ro = 13 (Ω = 0.11 s−1) and (c) Ro = 8.2
(Ω = 0.17 s−1). In all cases symbols are plotted at ∆t = 2 s (cf. figure 6 a).

ring was seen to be twisted. Clearly, the direction of propagation of the vortex ring
at this stage is no longer perpendicular to the plane of the vortex ring.

The angle φ over which the plane of the vortex ring rotates has been measured
as a function of time and the results are plotted in figure 6 (b). The orientation
angle decreases steadily, implying that the vortex ring rotates with a constant angular
velocity (in a clockwise direction), whose value is obtained from the slope of these
data points. Using a linear regression, given by the straight line in figure 6 (b), a value
Ωv.r. = –0.06 ± 0.002 s−1 is obtained, which is exactly opposite to the angular velocity
Ω = 0.06 s−1 of the rotating table in this experiment. This means that relative to
the inertial frame of the laboratory the vortex ring maintains a fixed orientation in
space.

Figure 6 (c) shows the gradual decay of the propagation velocity of the vortex
ring. This velocity is calculated from the distance travelled by the midpoint between
the core centres in fixed time intervals. Figure 6 (c) shows a kink in the velocity
decay at around t = 32 s. At around the same moment there is a strong decrease
of the inclination angle θ between the plane of the vortex ring and its direction of
propagation (see figure 6 d ). It has been observed from dye-visualization experiments
that near the end of the motion the vortex ring is slightly twisted (see figure 5 e). From
figure 6 (d ) it is seen that this twisting of the vortex ring starts at around t = 32 s.
After this the vortex ring continues its propagation very slowly, but the twisting and
deformations of the structure will inevitably lead to its total destruction.

A series of experiments have been performed in which different rotation rates Ω
were used with the injection parameters for the vortex ring kept fixed. If the table
rotates faster the evolution of the flow field has the same features as described above,
although the curvature of the trajectory is enhanced (see figure 7). Experiments were
carried out for four different values of the rotation rate, ranging from Ω = 0.06 s−1 to
Ω = 0.17 s−1 (Ro = 23 and Ro = 8.2, respectively) and the angular velocity Ωv.r. of the
rotating vortex ring was measured in each experiment. The results are summarized
in table 1, showing that for all experiments the angular velocity of the rotation of
the vortex ring is just equal but opposite to the angular speed of the rotating table,
indicating that the vortex ring maintains a fixed orientation relative to the inertial
frame of the laboratory.

This property of the horizontal motion of a vortex ring in a rotating fluid had
already been observed by Taylor in a similar experiment (Taylor 1917, 1921). However,
Taylor did not report measurements on the curved trajectory nor observations about



80 A. H. M. Eisenga, R. Verzicco and G. J. F. van Heijst

Exp. Ω (s−1) Ωv.r. (s−1)

1 0.06 –0.06
2 0.09 –0.101
3 0.11 –0.12
4 0.17 –0.17

Table 1. Rotation rate Ωv.r. of vortex ring in curved motion for four experiments with different
angular velocity Ω of the rotating table (measurement inaccuracy ∆Ωv.r. = ±0.002)

the deformation of the vortex structure. He performed this experiment merely to
demonstrate the analogy with the horizontal motion of a solid sphere in a rotating
fluid. According to theoretical predictions, it was expected that the motion of three-
dimensional objects in a rotating fluid is affected by the background rotation. For
the experiments with the sphere Taylor built an experimental set-up in which a solid
sphere could be towed in a horizontal plane through a rotating fluid by pulling a
wire steadily. A homogeneous sphere was used with the same density as the fluid.
The path of the sphere was observed to be deflected to the right relative to a system
rotating in an anti-clockwise direction.

According to the arguments given by Proudman (1916) (for completeness summa-
rized in the Appendix of this paper) this behaviour can be explained by analysing the
balance of the forces acting on the sphere. Consider a homogeneous sphere of mass
M with the same uniform density as the fluid. The fluid rotates in an anti-clockwise
direction with angular velocity Ω. The sphere propagates relative to the rotating
system with velocity U in a direction perpendicular to the rotation axis. The balance
of all the forces acting on the sphere (Proudman 1916) gives a net force 3

2
MΩU

orthogonal to the trajectory of the sphere to the right, deviating the motion of the
sphere in a clockwise direction.

To determine the acceleration of a sphere in response to an applied force a virtual
mass 1

2
M, due to the displacement of the surrounding fluid, has to be added to its real

mass M, yielding a total mass 3
2
M (see Batchelor 1967, p. 453, where this is derived

for a sphere moving in a fluid otherwise at rest). Supposing that this also holds for
the motion of a sphere in a rotating fluid, the acceleration of the sphere due to the
force 3

2
MΩU is then given by a⊥ = ΩU, in the same direction as the force. This

centripetal acceleration causes the sphere to move along a circular path with radius
Rc, according to ac = U2/Rc. Equating the expressions for a⊥ and ac then yields the
relation:

U = ΩRc, (4.1)

implying that the angular velocity (U/Rc) of the circular motion of the sphere is just
equal to the angular velocity of the rotating table, although the sense of the rotation
is opposite.

It should be stressed that this model is derived for the motion of a solid sphere in
an ideal rotating fluid, which is quite different from the translating vortex ring in the
present experiments. In fact, in the derivation of the model (see the Appendix) the
pressure force exerted by the surrounding flow on the surface of the sphere (caused
by the combined Coriolis forces acting on the fluid elements displaced by the moving
sphere) played a crucial role and Proudman (1916) has shown that this force depends
on the shape of the solid considered. For example, for a prolate ellipsoid with polar
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Figure 8. Decay of propagation velocity of a vortex ring as measured from dye-visualization
experiments with Re = 900 and different rotation rates: Ro = ∞ (no background rotation) (open
circles), Ro = 23 (filled circles), Ro = 16 (crosses), Ro = 13 (triangles) and Ro = 8.2 (squares).

axis parallel to the rotation of the system this pressure force is larger than for a
sphere, while for an oblate ellipsoid oriented in the same way it is smaller. A vortex
ring transports during its motion a closed blob of fluid, called the vortex ‘atmosphere’
(Thomson 1867). The boundary of this vortex ring atmosphere does not have the
shape of a simple mathematical object, and the pressure force cannot be computed
analytically. On the other hand, similarly to a sphere (and in contrast to a prolate or an
oblate ellipsoid) the vortex ring atmosphere has equal dimensions in the vertical and
lateral directions orthogonal to the horizontal propagation. Furthermore, the shape of
the boundary of the vortex ring atmosphere in the experiments without background
rotation might reasonably be approximated by a spherical surface. Therefore, the
mean pressure force at a right angle to the motion of the vortex ring is assumed to
be equal to the force exerted on a sphere. The motion of the vortex ring is then given
by (4.1), which describes a curved path with angular velocity equal but opposite to
the rotation rate of the table. Unlike the solid structure of the sphere, the shape of
the vortex ring atmosphere is subject to deformations resulting from local variations
in the pressure force exerted by the surrounding fluid. Deformations of the vortex
ring structure affect the evolution of the flow and will be examined in more detail
in § 4.3.

According to (4.1) the ring trajectory is circular only if the propagation velocity
U is constant. A decaying velocity results in a decreasing value for the radius of
curvature Rc, as displayed by the spiral-shaped trajectory in figure 6 (a). The decay
of the velocity U results mainly from viscous diffusion of vorticity, but is enhanced
by effects of the rotation through the deformation of the vortex structure. Figure 8
shows the decrease of the propagation velocity of the vortex ring in experiments with
different rotation rates of the fluid. The case without background rotation (Ro = ∞)
is also included, for which the velocity decay is solely due to viscous effects. It is seen
that with increasing background rotation (decreasing Ro-values) the velocity decay is
enhanced and a substantial retardation of the ring speed is imposed by the system
rotation. This phenomenon is related to the vorticity dynamics of the vortex structure
in the rotating fluid, which will be examined in the next subsection.
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t=167
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Figure 9. Ring trajectories measured from the positions of the core centres in the horizontal
symmetry plane z = 0 (Ro = 23 and Re = 900). Experimental data are denoted by symbols (plotted
at ∆t = 5.6) and the results from two numerical simulations are plotted by lines. The solid lines
denote the ring trajectory from a simulation initiated with a steady vortex ring computed in a
preliminary simulation from a finite flow injection. The dashed lines denote the ring trajectory from
a simulation initiated with a vortex ring with a Gaussian vorticity profile in the ring core. For
experimental parameters: see the caption to figure 5.

4.3. Vorticity dynamics in the horizontal plane of symmetry

In the previous subsection the trajectory of the vortex ring was considered and its
curvature was explained ignoring the vorticity dynamics. From figure 5, however, it
is clear that during the evolution significant changes in the vortex structure occur
and these are expected to be related to the effects of the background rotation.
A detailed study of the vorticity dynamics from laboratory experiments is hardly
possible because of the three-dimensional nature of the flow. In contrast, the complete
three-dimensional structure of the evolving vortex ring can be examined by direct
numerical simulations, as well as the flow in any cross-sectional plane. Some aspects
of the vorticity dynamics conjectured from dye-visualization experiments have been
verified by these numerical simulations and, in addition, a detailed analysis of the
three-dimensional vortex structure has been performed.

To check the results of the numerical simulations and the scaling of the experiments,
the trajectory of the computed vortex ring has been compared with the ring trajectory
obtained from a laboratory experiment with the same parameters. The rotation rate
of the system in this laboratory experiment was Ω = 0.06 s−1, yielding the values
Ro = 1.4/Ω = 23 and Re = 900 to be used in the simulations (according to the scaling
of the experiment). In numerical simulations the ring trajectories are obtained from
the successive positions of the vorticity peaks in the horizontal plane z = 0 through the
centre of the vortex ring. In figure 9 the ring trajectories obtained from the laboratory
experiment and corresponding numerical simulation are plotted simultaneously. They
show a very nice agreement, taking into account the experimental inaccuracy in the
measurement of the positions of the vortex centres from the dyed core patches (see
figure 5) and the differences between vorticity and passive scalars mentioned in § 3.3.
A better correspondence cannot be expected in view of the different initial conditions
used in the numerical simulation. On the other hand, the main features of the flow
are insensitive to the initial vorticity distribution in the ring core. To demonstrate
this an additional numerical simulation has been carried out which is initiated by a



Dynamics of a vortex ring 83

(b)(a)

x

y

x

y

Figure 10. (a) Velocity vector plot showing the planar flow u2 in the horizontal plane of symmetry
z = 0 of a vortex ring propagating from left to right. Relative to a system in anti-clockwise rotation,
with rotation vector pointing along the z-axis, this flow experiences a Coriolis force proportional to
u2 × 2Ω. The vector field of this force is plotted in (b). The thick solid lines are vorticity contours
at |ωz | = 0.1, which are indicative of the boundaries of the cross-sections of the vortex core.

vortex ring with a Gaussian vorticity profile in the ring core. The computed trajectory
of this vortex ring is also shown in figure 9, showing a similar curved ring motion;
however, the ring trajectory does not match properly with the experimental data in
this case. In conclusion, the numerical simulation initiated with a steady vortex ring,
being computed in a preliminary simulation from a finite flow injection, mimic the
laboratory experiment quite well in the presence of the background rotation; this
simulation will now be used to examine the effects of the rotation of the system on
the vorticity dynamics of the vortex ring.

As a first step in the analysis of the flow dynamics consider the flow in the
horizontal cross-sectional plane through the vortex ring centre. This plane is a mirror
plane of the motion, since deformations of the vortex ring due to Coriolis forces
appear symmetrically in the upper and lower ring halves, and this feature has already
allowed the simulation of only one half of the vortex ring. As a consequence, the flow
in this plane is planar and therefore attractive for a detailed analysis. In addition, the
computed structure of the flow in this plane can be compared with the video images
from the dye-visualization experiment, in which the flow in the same cross-sectional
view was recorded. Relative to the Cartesian coordinates defined in figure 2 this
planar flow is given by a two-dimensional velocity vector u2 in the plane z = 0 with
components ux and uy in the x- and y-directions, respectively, and the vorticity vector
is directed normal to this plane with vertical component

ωz =
∂uy

∂x
− ∂ux

∂y
. (4.2)

The two core parts of the vortex ring in this cross-sectional plane have positive and
negative vorticity ωz , respectively.

As already evident from the dye visualizations in figure 5, a typical feature of the
evolution of the flow in this plane is the variation of the sizes of the core sections,
which is opposite for the core parts on the inner and outer side of the curved ring
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path. It will be shown now that this is a direct consequence of the Coriolis force
acting on the flow field of the vortex ring. In the horizontal symmetry plane this force
is given by FC = u2 × 2Ω (per unit mass) and is directed orthogonal to the velocity
vector u2 to the right. Figure 10 (a) presents a vector plot of the initial velocity field
of the vortex ring in the plane z = 0. For each of the velocity vectors a Coriolis
force vector is plotted in figure 10 (b). This Coriolis force vector plot demonstrates
the presence of a mean force that deflects the motion of the vortex ring into a curved
ring trajectory (in a clockwise sense). In addition, the orientations of the individual
Coriolis force vectors indicate that the planar flow will be diverged from the outer
core part (with anti-clockwise rotation) and converged towards the inner core part.
In between the core parts the central axial flow of the vortex ring will be deflected
to the right. This forced deflection of the flow generates a pressure gradient that
partially opposes the effect of the Coriolis force. Only for steady inviscid flows in
slow motion relative to a rotating system is the Coriolis force balanced completely by
a pressure gradient, yielding a two-dimensional flow in “geostrophic equilibrium”. In
contrast, for the present three-dimensional flow the pressure forces do not cancel the
deflecting Coriolis forces and in the subsequent evolution the flow structure changes
according to the orientation of the force vectors in figure 10 (b). As a consequence of
the opposite forcing the outer core part (with positive ωz) widens and the inner core
part (negative ωz) is squeezed, as observed previously in the dye visualizations.

On account of the incompressibility of the fluid, the squeezing of the inner core
part of the vortex ring results in a local stretching of the fluid elements in a direction
normal to the plane z = 0. The opposite happens at the widening outer core part where
fluid elements are compressed along the same direction. The evolution of the vertical
vorticity component ωz of the planar flow field is affected by this local stretching and
compressing of fluid elements. The relevant vorticity equation is obtained by taking
the curl of the Navier–Stokes equation (3.1), yielding the equation

Dωz
Dt

= ωz
∂uz

∂z
+

1

Ro

∂uz

∂z
+

1

Re
∇2ωz, (4.3)

while the other vorticity components vanish identically in the plane z = 0. In this
equation uz denotes the vertical velocity component that vanishes identically in the
plane z = 0. The vertical gradient ∂uz/∂z does not vanish and represents the local
stretching (∂uz/∂z > 0) and compressing (∂uz/∂z < 0) of fluid elements along the
vertical z-axis. According to (4.3) the vorticity ωz changes by self-induced stretching
and compression of relative vorticity (first term on right-hand side of (4.3)), induction
of relative vorticity from the permanent background vorticity (second term), and
viscous diffusion (third term). Since in the present simulation (with Ro = 23) the
magnitude of the relative vorticity of the vortex ring is much larger than the uniform
vorticity Ro−1 of the background rotation (both differing initially a factor O(70)),
the first term on the right-hand side dominates the second term. Apart from viscous
diffusion, the vorticity in the horizontal plane thus changes by self-induced stretching
and compression of vortex lines of relative vorticity, which are initially circular lines
along the toroidal axis of the vortex ring. At the squeezed inner core part vortex
lines are vertically stretched and the negative vorticity ωz in the horizontal plane
increases (in an absolute sense); at the widened outer core part vortex lines are
vertically compressed and the positive vorticity ωz in the horizontal plane decreases.
It is stressed that, although the induction of relative vorticity from the permanent
background vorticity is of minor importance in these processes, the rotation of the
system affects the vorticity dynamics of the flow indirectly by the opposite forcing
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Figure 11. (a) Time evolution of the helicity h (computed only for the upper ring half) for three
different Ro-values (Re = 900): Ro = 23 (solid line), Ro = 12.6 (dotted line) and Ro = 8.2 (dashed
line). (b) Time evolution of the absolute values |ωz,peak| of the peak vorticities in both core centres
for Ro = 23 and Re = 900: positive peak (thick solid line) and negative peak (thick dashed line);
decay of peak vorticity by viscous diffusion (without background rotation and Re = 900) is included
for reference (thin dashed line).

of the vertical core parts of the vortex ring owing to Coriolis forces. Note that
the induction of relative vorticity ωz from the background vorticity might become
important at later times, when the magnitude of the vorticity in the ring core has been
decreased by viscous diffusion, or in simulations with increased background rotation.

The squeezing and widening of the core sections will drive a mass flow from one
side of the vortex ring (the squeezed side) towards the other side. An easy way to
verify the presence of such a flow is by computing the helicity h =

∫
V
ω · u dV over

the volume V of the computational domain. In fact, the mass flow has to follow
the toroidal axis of the ring and, since the flow direction is opposite to the vorticity
vector, the helicity has to be negative. Of course this is because the evolution of
only one half of the vortex ring is computed (see figure 2); in the complementary
ring half the direction of the flow is in the same sense as that of the vorticity and
the helicity is positive. The total helicity of the ring is thus zero, as one should
expect from the presence of the horizontal symmetry plane. In figure 11 (a) the time
evolution of the helicity of one ring half is shown for several cases with different
Ro-values. For all simulations the helicity is on the average indeed negative, although
oscillations are exhibited whose amplitudes depend on the Rossby number. These
oscillations are due to the opposite squeezing and widening of the vertical ring core
parts that, as explained in the previous paragraph, create a differential vorticity along
the toroidal axis of the ring and induce, in turn, Kelvin waves (see e.g. Saffman
1992). In figure 11 (b) the time evolution of the absolute values |ωz,peak| of the peak
vorticities in both core centres are plotted for a simulation with Ro = 23. It shows
the alternating differences between the vorticity peak in the outer core part (positive
vorticity) and in the inner core part (negative vorticity) before t ' 30, in agreement to
the oscillations in the helicity. The viscous decay of the peak vorticity in a simulation
without background rotation is included for reference. After t = 30, small oscillations
in the peak values are still observable, but now the negative peak always exceeds the
positive peak in absolute value. Apparently, the stretching of the inner core part is
enhanced by a secondary mechanism, but this will be addressed in the next subsection.
For the moment, attention is focused on the formation of the Kelvin waves.

The mechanism by which Kelvin waves develop in vortices with variable cross-
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sections can be summarized as follows: consider a straight vortex with constant
circulation Γ , the vorticity ω̄ being uniformly distributed over a circular core with
radius a. The tangential velocity uφ in the core is sustained by a radial pressure force
directed towards the vortex axis, as expressed in non-dimensional terms by

∂p

∂r
=
uφ

2

r
, (4.4)

according to which the pressure at the core axis is lower than at the core boundary.
Suppose this vortex is locally perturbed, hence the core radius is not uniform along
the axis of the vortex. On account of the conservation of circulation along the vortex
the vorticity in the core is increased in regions where the core is narrow and the vortex
rotates faster locally. Following (4.4), this enhanced swirling flow induces an additional
reduction of the pressure at the core axis. Oppositely, in regions where the core is
wide the vorticity is locally reduced and the vortex rotates slower, corresponding to
a relatively higher pressure at the axis. This pressure gradient along the vortex axis
causes an axial flow from wide core sections of high pressure towards narrow core
sections of low pressure, thus tending to cancel the local variations of the core size.
The restoring effect of this axial pressure force is responsible for the excitation of
waves, travelling along the vortex axis.

The propagation of axial waves on rectilinear vortices was first studied by Thomson
(1880) using a linear theory. Recently, in several papers this theory has been extended
to more general vortex configurations (see e.g. Moore & Saffman 1972; Lundgren &
Ashurst 1989) and the effects of viscosity and nonlinear terms have been examined
by direct numerical simulations (see e.g. Verzicco, Jiménez & Orlandi 1995). For the
present study, however, a thorough analysis of these waves is difficult, because of
the complexity of the flow and the additional effect of the Coriolis force. It is well-
known (Batchelor 1967, p. 555) that the Coriolis force might also act as a restoring
force, that tends to eliminate local flow deformations by exciting waves. Therefore,
to examine the nature of the observed oscillations in the helicity of the flow a series
of simulations have been performed in which the Rossby number was varied. The
results of these simulations are plotted in figure 11 (a). It is clear that initially the
period of the oscillations is independent of the Rossby number, which proves that
the oscillations are truly Kelvin waves. At later times the oscillation period increases
and the increase is not the same for all the cases. In a very simple approach this
increase can be explained using the expression for the group velocity cg ' 0.417 ω̄a
of long axisymmetric Kelvin waves on a uniform columnar vortex† (see Saffman
1992, p. 231). From this expression it is found that the group velocity of these waves
varies proportionally to the vorticity in the vortex. As seen in figure 11 (b), during
the evolution of the vortex ring in the rotating environment the vorticity in the ring
core decays substantially by diffusion, implying a reduction of the group velocity
of the waves and hence an increase in the oscillation period. This is confirmed by
figure 11 (a), although the increase of the period is not the same for all the cases,
since the amount of diffusion depends on the details of the flow structures which
change with the Rossby number.

Some details of the complicated vortex dynamics can be reconstructed from the
vorticity cross-sections shown in figure 12. To better appreciate the deformations

† Using the initial mean values ω̄ = 2 and a = 0.4 yields cg = 0.33. The wave propagates back
and forth along half of the vortex ring toroidal axis, hence the total distance travelled in one period
is 2πR = 6.3, for R = 1 initially. The initial oscillation period is then 2πR/cg = 19, comparable to
the period of the first oscillation in figure 11 (a).
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Figure 12. Contour plots of relative vorticity ωz in the horizontal symmetry plane z = 0 of the
vortex ring, obtained from a numerical simulation with Ro = 23 and Re = 900: (a) t = 17, (b)
t = 33, (c) t = 50, (d ) t = 67, (e) t = 83, (f ) t = 100, (g) t = 117, (h) t = 133, (i ) t = 150. Contour
increments ∆ωz = ±0.1, minimum contour level at |ωz | = 0.1; solid lines denote positive values and
dashed lines negative values. The insets show the trajectories of the core centres: the instantaneous
position of the vortex ring in each panel is denoted by black dots.

occurring in the vortex core, each panel in figure 12 is a blow-up of the small region
occupied by the vortex ring. To get some feeling for the relative positions of these
panels in the trajectory of the vortex ring, insets are provided showing the complete
ring trajectory with the instantaneous ring positions denoted explicitly. The shrinking
and widening of the core parts, already observed in the dye-visualization experiments,
is confirmed by the vorticity contour plots of figure 12, even though additional features
are observed. In front of the outer core part (positive vorticity ωz) vorticity filaments
are seen to be formed. The filaments are strained towards the opposite core part,
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Figure 13. Contour plots of passive scalar concentration C in the horizontal symmetry plane z = 0
of the vortex ring, obtained from a numerical simulation with Ro = 23 and Re = 900: (a) t = 17,
(b) t = 33, (c) t = 50, (d ) t = 67, (e) t = 83, (f ) t = 100, (g) t = 117, (h) t = 133, (i ) t = 150.
Contour increments ∆C = 0.1; minimum contour levels: (a–c) C = 0.25, (d ) C = 0.2 and (e–i )
C = 0.15. The insets show the trajectories of the core centres: the instantaneous position of the
vortex ring in each panel is denoted by black dots.

upon which they rapidly disappear owing to ordinary diffusion and cross-diffusion
with oppositely signed vorticity. A similar formation of filaments was also observed in
dye-visualization experiments (figure 5 d ) and is also seen in the contour plots of the
passive scalar distribution (figure 13). These concentration plots also clearly reveal the
continuous accumulation of scalars in the outer core part due to the azimuthal mass
flow previously discussed. It is emphasized that the comparison between figures 12
and 13 is useful to better appreciate analogies and differences between vorticity and
passive scalars due to the absence of vortex stretching and the reduced diffusivity of
the latter.
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Figure 14. Velocity vector plots showing the velocity fields at t = 17 (a) and t = 83 (b) relative to a
frame rotating instantaneously with the vortex ring. The positions of the shifted stagnation points
are indicated by black dots. Contour lines at |ωz | = 0.1 show the stripping of vorticity from the
boundary of the vortex core (Ro = 23 and Re = 900, cf. figure 12 a, e).

The reason for the formation of filaments stripped from the outer core part
lies in the strain experienced by the vortex ring during its motion. This is easily
verified by inspecting the velocity field of the vortex ring relative to a frame rotating
instantaneously with the vortex itself. The construction of such a rotating frame
is based on the observation (see § 4.2) that the vortex ring rotates with a constant
angular velocity, opposite to the rotation Ω of the table. The decaying speed U of
the vortex ring determines the radius of curvature Rc of the curved trajectory (see
(4.1)) and the centre of the co-rotating frame is then located at the local centre of
curvature.

The flow relative to such a co-rotating frame is shown in figure 14 as a velocity vector
plot, with the vorticity contours ωz = ±0.1 showing the accompanying deformation
of the boundary of the vortex core. The deflection of the relative flow due to Coriolis
forces is clearly seen between the vortex core parts. As a result of this deflection, the
stagnation point (marked by a black dot) at the front of the vortex ring is slightly
shifted towards the outer core part†. When this point enters the boundary of the
vortex core, a thin filament of vorticity is stripped and advected by the local strain
flow, indicated by the adjacent velocity vectors. The position of the shifted stagnation
point relative to the vortex ring varies in time, probably due to the presence of the
Kelvin waves, and hence the stripping of the vortex core is not continuous, as was also
found in the experiment and in the numerical simulation. Incidentally, it is noted that,
even though vortex filaments in the front of the ring are preferentially peeled from
the outer core part, there are some instants (t = 33 and t = 67 in figure 12) during
which filaments are also peeled from the inner core part. These times correspond to
the negative peaks of the helicity (figure 11 a), giving further support to the idea that
the oscillations induced by Kelvin waves modify the location of the frontal stagnation
point, causing the filament formation to be intermittent.

† In the absence of the background rotation this stagnation point is located at the central axis
of the vortex ring.
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Similarly to the frontal stagnation point, the stagnation point at the rear of
the vortex ring is also shifted, but in this case towards the inner core part. The
deformation of this core part also results from the position of the stagnation point,
which in figure 14 is located at the border of the core section. The strain flow
surrounding the stagnation point then causes the observed elongation of this core
part.

The shedding of vortex filaments from the ring core causes the vortex ring to
gradually weaken in time until hardly any vorticity is left in the structure (t = 150 in
figure 12). This results in a rapid decrease of the translation velocity U of the vortex
ring, faster than solely viscous decay as evidenced in figure 8. Also, since the vortex
stripping is directly related to the deflection of the flow relative to the vortex ring,
this phenomenon will be enhanced when the rotation rate is increased. This is again
confirmed by the results of figure 8 and by the consequently more strongly curved
trajectories of figure 7.

4.4. Three-dimensional flow structure

In order to get a complete picture of the ring dynamics, its three-dimensional structure
should be investigated. Since it is difficult to gain insight into the three-dimensional
flow from laboratory experiments, the further investigation is mainly based on nu-
merical simulations.

One specific feature, observed from the simulations, is the creation of a secondary
vortex that extends as a horizontally elongated tail behind the main vortex ring. This
is shown in figure 15 by plotting perspective views of vorticity magnitude iso-surfaces.
Indeed, a similar structure also appeared in the laboratory experiments (see figure 5 d )
as a thin filament of dye between and behind the dyed core parts, although it was
not self-evident from the visualizations that this dye filament indicated the presence
of a tail vortex.

The tail vortex is located near the centre of the vortex ring, slightly above the mirror
plane of the flow and the vorticity in this vortex points away from the vortex ring,
according to the sense of rotation indicated in figure 15 (a). Because of the symmetry
of the flow, there is a similar vortex below the mirror plane with oppositely signed
vorticity and both vortices compose a vortex pair. To verify that the formation of this
vortex pair does not depend upon the numerical boundary conditions imposed at the
plane z = 0, a simulation of a complete vortex ring has been performed. Figure 16
shows the pair of elongated vortices behind the vortex ring for this simulation. This
vortex pair propagates by mutual propulsion perpendicularly to its orientation along
the horizontal plane, as indicated in figure 15 (c). Note that in the horizontal plane
z = 0 the flow associated with this vortex pair agrees with the deflection of the flow
near the centre of the vortex ring observed in figure 14 (a).

The appearance of such a strong vortex pair behind the ring could hardly be
expected without the results of the numerical simulation. Once this structure is found,
however, it is necessary to explain the mechanism of its formation. The creation of the
vortex pair must result from stretching and tilting of vortex lines. Taking advantage of
the initially symmetric structure of the vortex ring, more insight in the tail-formation
might be gained by examining the vorticity transport equation attentively. In this
analysis another interpretation will be obtained for the curved trajectory of the vortex
ring.

Taking the curl of the Navier–Stokes equation in (3.1) gives the vorticity equation:

Dω

Dt
= (ω · ∇)u+

1

Ro
(k · ∇)u+

1

Re
∇2ω. (4.5)
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Figure 15. Perspective views of the evolution of the vortex ring structure as represented by
isosurfaces of relative vorticity, obtained from a simulation with Ro = 23 and Re = 900. The curved
arrow in (a) indicates the sense of rotation in the tail vortex, which propagates in a horizontal plane
in the direction of the arrow in (c). The vortex ring is mainly viewed from the rear side to show
the relative position of the tail vortex; the initial propagation of the vortex ring is in the direction
of the positive x-axis. Isosurfaces |ω| plotted for each moment at half the maximum value |ω|peak:
(a) t = 17, (b) t = 33, (c) t = 50, (d) t = 67, (e) t = 83, (f) t = 150.

The second term on the right-hand side acts as an additional source term by which
relative vorticity is induced by the permanent rotation of the system. This mainly
occurs in regions of the flow where the vertical gradient (k · ∇) of the velocity field is
large. For the present flow this happens in planes where the vorticity in the core is
perpendicular to the axis of rotation of the system, i.e. in the vertical plane through
the centreline of the vortex ring. Note that in the case of zero background rotation
all other terms in (4.5) are in balance for an axisymmetric vortex ring, so that any
deviation from this structure now primarily results from the term proportional to
1/Ro.
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Figure 16. Perspective view from the side of the complete vortex ring structure as represented by
an isosurface of relative vorticity, obtained from a simulation with Ro = 23 and Re = 900 at t = 17.
The vortex ring propagates from left to right, two elongated counter-rotating vortices are observed
extending behind the vortex ring. Isosurface |ω| plotted at half the maximum value |ω|peak .

Consider the flow in the vertical plane through the centreline of the vortex ring,
slicing the horizontal parts of the ring core orthogonally. Initially, the flow in this
plane is equal to the flow in the horizontal plane z = 0 examined in the previous
subsection, owing to the axisymmetric structure of the initial vortex ring. One can thus
think of the flow as presented in figure 10 (a) with now the x- and the z-axes oriented
horizontally and vertically, respectively. The vorticity in the sections of the ring core
is normal to this vertical plane and is thus directed parallel to the y-axis. Since the
unit vector k points along the z-axis (hence (k · ∇) = ∂/∂z), the second term on the
right-hand side of (4.5) describes the induction of relative vorticity components ωx
and ωz at a rate proportional to ∂ux/∂z and ∂uz/∂z, respectively. Direct inspection
of the magnitude of the terms ∂ux/∂z and ∂uz/∂z has shown that the former is
dominant (see figure 17 a, b). Since in the upper half of the vortex ring ∂ux/∂z < 0
in the main part of the cross-section, the induced axial vorticity component ωx is
negative. Of course, the same (with the gradient sign reversed) occurs in the lower
half of the ring, implying the generation of positive ωx. Near the ring centre these
vorticity components strengthen due to self-induced vortex stretching, according to
the component ωx(∂ux/∂x) in the term (ω · ∇)u on the right-hand side of (4.5). The
contour plot of ∂ux/∂x (figure 17 c) shows that ∂ux/∂x > 0 (vortex stretching) at the
rear of the vortex ring and ∂ux/∂x < 0 (vortex compression) at the front side. It
should be stressed that, although the analysis of the terms in figure 17 is performed
only for t = 0, the same velocity gradients also appear at later times (with the x- and
z-axes tilted according to the rotation of the vortex ring). As evidenced in figure 15,
the toroidal structure of the main vortex ring does not change much.

Considering now the whole vortex ring one can think of the following mechanism
for the formation of the tail vortices. To explain this it is necessary to introduce the
absolute vorticity ωa = ω + (1/Ro)k of the flow, representing the vorticity relative
to an inertial (non-rotating) frame of reference. It can be shown (see Pedlosky 1987,



Dynamics of a vortex ring 93

k

z

x

k

z

x

k

z

x

k

z

x

(b)

(c) (d )

(a)

Figure 17. Contour plots of (a) ∂ux/∂z, (b) ∂uz/∂z, (c) ∂ux/∂x and (d ) ∂uz/∂x in the vertical
(x, z)-plane through the centre of the initial vortex ring. Solid lines denote positive values and
dashed lines negative values, contour increments ±0.1. The structure of the ring core is represented
by several thick vorticity contour lines (levels |ωy | = 0.1, 1.0 and 2.0). The chain-dotted line is the
trace of the horizontal symmetry plane of the flow on the cross-section of the vortex ring.

p. 34) that vortex lines of absolute vorticity ωa are advected with the flow as material
lines (at least in the limit of inviscid flow according to Kelvin’s theorem), a property
that does not hold for vortex lines of relative vorticity ω. In the present flow, far from
the vortex ring there is only the background vorticity due to the ambient rotation,
oriented along the z-axis with non-dimensional magnitude 1/Ro. The corresponding
vortex lines of absolute vorticity are thus straight vertical lines. However, those vortex
lines passing close to the vortex ring will be tilted according to the local velocity
gradients in the flow field of the vortex ring, as shown in figure 18. The dominant
terms are ∂ux/∂z < 0 in the upper ring half and ∂ux/∂z > 0 in the lower half,
generating relative vorticity components ωx < 0 and ωx > 0, respectively. In the
region behind the vortex ring the generation of negative ωx in the upper ring half
means that the vortex lines gain a negative slope and thus are tilted towards the vortex
ring centre. Closer to the symmetry plane these tilted vortex lines are intensified by
self-induced vortex stretching due to the gradient ∂ux/∂x > 0 in the flow field at the
rear side of the vortex ring. This combination of vortex line tilting, induced by the
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Figure 18. Two different perspective views taken from the rear side of the vortex ring at t = 17
through iso-surfaces of absolute vorticity |ωa| = 0.5|ωa|peak (Ro = 23 and Re = 900; cf. figure 15 a).
Vortex lines of absolute vorticity are released from a single horizontal line (drawn in the figure)
that represents the intersection of the horizontal plane z = 2 and the vertical (x, z)-plane through
the centre of the initial vortex ring. Far from the vortex ring the vorticity in the vortex lines points
vertically upwards; close to the vortex ring vortex lines are tilted and stretched due to local gradients
in the velocity field of the vortex ring.

system rotation, and subsequent self-induced stretching results in the formation of the
horizontally elongated tail vortex in the upper ring half (see figure 18 a). The vorticity
in this tail vortex is in the direction of the negative x-axis. In the lower ring half (not
shown in figure 18) the tilting of vortex lines behind the vortex ring results in vortex
lines with a positive slope (generation of ωx > 0). One can imagine that these vortex
lines are also deflected towards the centre of the vortex ring. In fact, the vortex lines
in the upper ring half continue in the lower ring half and the tilting and stretching
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processes are mirror-symmetric. Subsequent stretching of these tilted vortex lines at
the ring centre yields a tail vortex in the lower ring half with vorticity pointing along
the positive x-axis, hence opposite to the vorticity in the tail vortex in the upper ring
half.

As mentioned above, these tail vortices form a vortex pair propagating towards
the vertical core part on the inner side of the ring trajectory (as observed in fig-
ure 15), where they interfere with the local orthogonal vorticity in this core part.
On the one hand, the circumferential flow associated with each leg of the vortex
pair induces an additional stretching of the vorticity in this core part while, on
the other hand, the vortex pair is curved by the main flow of the vortex ring.
The increase of stretching induced by this vortex pair further enhances the squeez-
ing of the vortex core and the differential vorticity along the toroidal axis of the
vortex ring. As a result of this strong interaction with the tail vortices the ring
core is locally distorted, as seen in figure 15 (b–e). This torsion is also reflected in
the deformed shape of the negative vorticity contour lines near the core centre in
figure 12.

It should be noted that in the upper half of the ring the vorticity vector in the
tail vortex points in the opposite direction with respect to the local flow velocity,
thus generating additional negative helicity. This contribution is already included
in the data of figure 11 (a): the negative helicity must be attributed partly to the
mechanism previously described (see § 4.3) and partly to the tail vortex. However,
it has been checked by separation of these two contributions that the oscillatory
behaviour is entirely due to Kelvin waves and the helicity contribution of the tail is
always negative.

Returning to (4.5), a proper interpretation of the rotation term can give a different
explanation of the curved ring trajectory. By rewriting the rotation term in (4.5) as

1

Ro
(k · ∇)u ≡ 1

Ro
ω × k +

1

Ro
∇(k · u), (4.6)

it appears that the first term on the right-hand side is a pure rotation of pre-existing
vorticity, while the second term is a transformation of background vorticity (1/Ro)
into relative vorticity due to the gradient of the velocity component parallel to k.
Recalling that k is oriented in the direction of the z-axis, the first term on the
right-hand side describes a rotation of the vorticity vector ω in the vortex ring core
around this axis in clockwise direction. Since this tilting occurs at a rate 1/Ro, a
faster rotation of the ambient fluid will enhance the curvature of the ring trajectory, as
confirmed by the results of figure 7. Although this approach demonstrates the curved
motion of the vortex ring very nicely, the complete picture is more complicated. In
fact, the rotation rate depends on the local angle between ω and k, which varies
along the toroidal ring axis. In the vertical parts of the vortex ring ω and k are either
parallel or antiparallel and ω× k vanishes identically. For the horizontal parts of the
vortex ring the clockwise rotation around the z-axis means that the vorticity vector
pointing initially parallel to the y-axis is gradually turned towards the direction of
the x-axis. This tilting is counteracted by the component (1/Ro)∂uz/∂x in the second
term on the right-hand side in (4.6) as follows. In the horizontal part of the vortex
core in the upper ring half the vorticity has initially a negative component ωy and this
is turned into a negative component ωx by the clockwise ring rotation. The second
term in (4.6) describes the generation of ωx at a rate proportional to ∂uz/∂x. As
seen in figure 17 (d ) this gradient is positive in the upper ring half, thus generating
positive ωx that partially opposes the negative ωx due to the clockwise rotation. As a
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consequence of these effects the vortex ring does not have a uniform rotation, leading
to internal distortion of the vortex structure. Nevertheless, as shown in § 4.2, the
vortex ring propagates with average rotation equal and opposite to the background
rotation 1/(2Ro) of the system.

Before coming to the conclusions one further comment should be made about
figure 15. The vorticity iso-surfaces in this figure have been drawn using for each time
half the value of the instantaneous peak vorticity. As can be seen from figure 11 (b),
however, the peak vorticity undergoes a substantial decrease in time owing to ordinary
viscous diffusion and to the peeling processes described in § 4.3. This implies that the
vortex ring of figure 15 at t = 150 is in fact a very weak structure even though it
preserves its toroidal topology. This result agrees with the laboratory experiments in
which at the end of the ring evolution a compact blob of dyed fluid with hardly any
motion was observed.

5. Conclusions
In this paper the dynamics of a vortex ring that propagates perpendicularly to the

axis of a uniformly rotating fluid has been investigated. The interaction between the
permanent vorticity of the rotating fluid and the ring vorticity yields a comprehensive
example of the complex dynamics of localized vorticity distributions in rotating
flows. Owing to the initially ‘simple’ structure of the vortex ring, the analysis of the
development of the flow can be pursued in detail, yielding a thorough insight into
the induction and dynamics of relative vorticity in rotating systems. The investigation
was based both on laboratory experiments and on numerical simulations, which were
used as complementary tools.

Flow visualization experiments have shown that the vortex ring propagates in
the rotating system along a curved path, being deflected clockwise if the system
rotates anti-clockwise. A similar behaviour was observed in laboratory experiments
by Taylor (1917, 1921), though his experiments were only aimed at demonstrating
the analogy with the motion of a solid sphere in a rotating fluid. In Taylor’s papers,
neither measurements of the ring trajectory nor details on the evolution of the vortex
structure were reported. In the present study the ring trajectory has been measured by
following the dyed core patches in an illuminated cross-section of the vortex ring. The
trajectory has a spiral shape in the rotating frame, while the vortex ring maintains
its orientation with respect to the laboratory frame. Another typical feature of the
flow, observed from flow visualizations, is the variation of the size of the core cross-
sections: the section along the inner side of the trajectory gradually shrinks while the
other section expands in time.

Examination of the velocity field in the horizontal symmetry plane of the flow
shows that the flow near the ring centre is strongly deflected, owing to the action of
the Coriolis force. Also the flow around the vortex cores is deflected, forcing both
core sides oppositely. One side of the core expands while the other side contracts
and these processes are accompanied by compression and stretching of vortex lines,
respectively. Owing to this local forcing of the vortex core inertial waves, similar
to Kelvin waves along a rectilinear vortex, are excited, travelling along the toroidal
axis of the ring. The increase in time of the period of these waves could be ex-
plained by applying the theoretical results for the group velocity of Kelvin waves
along an infinitely long vortex: the group velocity of these waves is proportional
to the vorticity of the vortex. In the case of the vortex ring the vorticity decreases
mainly by viscous diffusion, resulting in a decaying group velocity and hence longer
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periods for the wave motion along the ring core. The deflection of the flow around
the vortex ring also caused the front and rear stagnation points to be shifted. In
particular, the front stagnation point was preferentially moved towards the core part
on the outer side of the ring trajectory, while the opposite happened for the rear
stagnation point moving towards the inner core part. The local strain around these
points led to stripping of vorticity filaments from the vortex ring, thus producing
a progressive weakening of the vortex structure leading to complete depletion. This
phenomenon is confirmed by the time evolution of the translation velocity of the
vortex ring (figure 8), which decays in time at a rate faster than in the non-rotating
case.

To gain more insight into the evolution of the three-dimensional structure of the
vorticity field, the results from the numerical simulations were analysed in detail. It
has been proved, by checking the trajectory and velocity of a vortex ring both in a
fluid at rest and relative to a rotating fluid, that the numerical simulations mimic
the laboratory experiments very well. Furthermore, the evolution of the flow in a
horizontal cross-sectional plane through the vortex ring has been compared with the
video images obtained from dye-visualization experiments. Despite the restriction that
the advection of passive scalars could only be simulated at disproportionately low
Schmidt numbers, the gradual deformations on each vertical core part of the vortex
ring were readily reproduced.

A specific feature of the flow, observed by examining the three-dimensional structure
of the vortex, is the formation of a horizontally extending vortex pair at the tail. A
detailed analysis has shown that this vortex pair is created by turning and stretching
of vortex lines by the main vortex ring. This process is initiated by the induction
of relative vorticity due to the rotation of the system, but the subsequent evolution
into an elongated vortex pair is dominated by the main flow field of the vortex ring.
The vortex pair propagates by its self-induced motion in a horizontal plane towards
the shrinking side of the main vortex ring, increasing the local stretching there and
thus enhancing the squeezing of this vertical core part. As a result the vortex core is
locally distorted.

Most of the experiments and simulations were performed at a relatively low rotation
rate of the system, i.e. Ro > 8. In these cases the development of deformations on
the main vortex structure could readily be followed in time and a thorough analysis
of the evolution of the vorticity field was possible. A few simulations have been done
with Ro < O(1). The coherent structure of the vortex ring is then rapidly destroyed
by the strongly enhanced stretching and turning of vortex lines. Moreover, induction
of relative vorticity is then no longer restricted to a region of the flow close to
the vortex ring, but it takes place over the whole flow domain, probably radiating
inertial waves. These results, however, cannot be considered as reliable, mainly for
two reasons: if inertial waves were radiated the limited size of the computational
domain and the periodic conditions on the lateral boundaries would then no longer
be suitable for studying the preferably unbounded flow field. In addition, as mentioned
in § 3.3, the rotation of the system affects the whole flow evolution, and so also the
generation of the vortex ring. For the range of Rossby numbers investigated in the
present paper it was known from previous experiments that a vortex ring was formed
initially, and therefore an axisymmetric vortex ring could be used as initial condition.
In contrast, for higher rotation rates this is not known and it would seem more
appropriate to use a numerical set-up as in Verzicco et al. (1996), where the initial
vortex structure was generated by injection of a finite amount of fluid through an
orifice.
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Appendix
In this Appendix the forces that are exerted on a solid object that propagates

perpendicularly to the axis of a rotating fluid are discussed. Attention is focused to
two special cases, i.e. the forces on a solid sphere and on a solid cylinder. These cases
typically illustrate the effect of the rotation of the fluid on either a three-dimensional
or a two-dimensional flow. Taylor (1917) discussed the forces that are exerted on
the sphere, which are responsible for the deflection of the sphere’s trajectory from
a straight line. The mathematical derivation of the expressions for these forces was
performed by Proudman (1916). For completion of the discussion in § 4.2 the main
results of these studies are summarized here briefly, emphasizing the difference in the
force balance exerted on a cylinder and on a sphere.

Consider a homogeneous solid object (either a cylinder or a sphere) of mass M
placed in a fluid that rotates with angular velocity Ω. The object moves steadily in a
prescribed motion with velocity U in a direction perpendicular to the rotation vector.
In addition to the pressure and viscous forces that are exerted on the object, in the case
of zero rotation, the object also experiences two inertial forces that directly originate
from the applied system rotation: (i) a centrifugal force MΩ2D acting through the
centre of gravity C of the object, pointing away from the centre of rotation (D is the
distance of C from the centre of rotation), (ii) a Coriolis force 2MΩU perpendicular
to the direction of the velocity U of the centre C, directed to the right if the rotation
of the fluid is anti-clockwise (see figure 19).

Furthermore, an additional pressure force is exerted by the surrounding flow on the
boundary of the object. This net pressure force results from the various inertial forces
(i.e. centrifugal and Coriolis forces) related to the system’s rotation that act on the
flow around the moving object. Expressions for the components of this pressure force
had been derived by Proudman (1916) and applied by Taylor (1917). For a vertical
cylinder with horizontal cross-sectional area A, extending over the whole fluid depth,
these components per unit axial length consist of: (i) a force MFΩ

2D acting through
C towards the centre of rotation and (ii) a force 2MFΩU acting at C perpendicularly
to U to the left (see figure 19). Here, MF = ρA is the mass per unit length of the
region of the fluid occupied by the solid object, ρ being the density of the fluid. If the
cylinder and the fluid have the same density, all forces that are related to the rotation
of the system cancel and the cylinder moves along a straight path, as if the rotation
were absent.

An important property of any two-dimensional flow (u, v) in a rotating fluid, re-
lated to this result, is the possibility of rewriting the components of the Coriolis
acceleration (−2Ωv, 2Ωu) in the Navier–Stokes equation in terms of the gradient of a
scalar function. Describing the two-dimensional flow by a stream function ψ, defined
by

u =
∂ψ

∂y
and v = −∂ψ

∂x
, (A 1)
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Figure 19. Additional forces exerted on a cylinder (a) and a sphere (b) due to the system’s rotation
(top view, the centre of rotation is marked by a cross at the top right corner, an arrow indicates the
anti-clockwise rotation of the system.) Centrifugal and Coriolis forces (dashed arrows) act at the
centre of gravity C of the object, while competing components of fluid pressure forces (solid arrows)
are exerted on the solid’s surface. For the sphere the resultant force is directed perpendicular to its
motion to the right, deviating its path from a straight line. U is the velocity of the object, M is the
mass of the object, MF is the mass of the fluid region occupied by the object, D is the distance of
the centre C of the object from the rotation centre and Ω is the system’s rotation rate.

the expression 2Ωψ is found for this scalar function. This implies that a reduced
pressure field p′ = p+ 2Ωψρ can be defined that, in addition to the centrifugal force,
also includes the Coriolis force on the fluid flow. In terms of the pressure p′ the
Navier–Stokes equation describing the flow relative to a rotating frame of reference
reduces to its formulation in an inertial frame and hence the two-dimensional flow in
the rotating system is not affected by the rotation.

For a sphere of volume V , however, the flow generated around it is essentially
three-dimensional and the forces due to fluid pressure are insufficient to cancel the
inertial forces on the sphere. The mathematical derivation of the total pressure force
on a sphere is rather complicated and the results obtained by Proudman (1916) will
be used, who derived the following expressions for the components of the pressure
force: (i) a force MFΩ

2D directed towards the centre of rotation and (ii) a force
1
2
MFΩU perpendicular to U to the left (see figure 19). In this case MF = ρV is

the total mass of the region of the fluid occupied by the solid object, ρ being the
density of the fluid. If the sphere and the fluid have the same density, the component
of the resultant force perpendicular to the sphere’s motion does not vanish and the
sphere is compelled to move along a curved trajectory, its path being deflected to the
right.

A special situation occurs when the sphere is moved very slowly and the system
rotates at a considerable speed. According to Proudman’s theorem any slow steady
motion relative to the rotating system is then two-dimensional. Experiments performed
by Taylor (1923) have shown that for the sphere also a steady two-dimensional flow
is established. In fact, he had observed that a cylinder of fluid of the same diameter
as the sphere moves with the sphere and acts towards the rest of the fluid as if it
were a solid cylinder. Such a cylinder of fluid, accompanying an object moving in a
rotating system, is commonly called a ‘Taylor column’.
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